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SECTION 1 — INTRODUCTION

Consider a simple production process which is assumed always to be
in one of only two states, a good state and a bad state. Specifically,
production begins in the good state and while there a chance event
occurs before each item is produced so that the provability of remaining
in the good state is 1 - m and the probability of a transition to the
bad state is =, Once in the bad state, the process remains there until
trouble is removed.

Associated with each item produced is a measurable characteristic
or quality, denoted Y, assumed to be a random variable with a distri-
bution depending on the unknown state of the machine. Let po(') and
pl(-) be the density function for quality given that the machine is in
the good and bad states, respectively.

A statistical control rule is a rule which specifies when the sys-
tem is to be brought from production to repair, which has the effect of
placing the process in the good state. Other than immediately after
repair, the true process state is assumed unknown at all times. Hence
a control rule must be based on the quality history of produced items.
This history is adequately summarized in the posterior probability given
the quality history that the next item will come from a machine in the
bad state. This probability at time +t is denoted Xt’ Costs are
associated with repairing the process and with the quality of each item
produced, and the objective is to minimize the average cost per unit

time.




This paper studies the 100% inspection case where sampling is by
attributes; each item is dichotomized as of good or defective quality.

A numerically feasible method is given for calculating the operating
characteristics of a rule as a function of the system parameters and the
critical value £&%* which the rule uses. The operating characteristics
which may be computed include the expected time between repairs, the
variance of the time between repairs, the overall proportion of defective
items produced and the fraction of repairs made to systems still in the
good state. The computational method given may be used for the case
where quality is any discrete random variable.

The validity of the computational method is checked in two ways.
First some inequalities which the optimal solution must satisfy are
developed and compared with the computed answer. Second, the discounted
cost problem is explored through dynamic programming, and the answers
computed using this method are compared with the previously computea
answers.

Next some examples of the wide variety of problems which may be
attacked through the use of tables of operating characteristics are given.

Lastly the model is checked for its sensitivity to proper choice
of system parameters. The Girshick and Rubin equations are used to com-
pute the operating characteristics in the situation where incorrect
parameters (transition probability, etc.) are used to compute the
posterior probabilities X which the rule uses for its decision

t

making.
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SECTION 2 — A MATRIX FORMULATION

This section develops the matrix formulation of the problem which
underlies the computational scheme proposed. The fact thal the sequence
[Xt’ t =0, 1, 2, **+ } of posterior probabilities forms a discrete
parameter Markov chain with a denumerable state space is of fundamental
importance. The computational method revolves about the matrix of
transition probabilities of this chain.

Let the good system state be denoted by O &and the bad state by

1 and let the state of Lthe system at time t Dbe denoted ®t' It is

assumed that if the machine is left undisturbed, these states

(@t, t =0, 1, 2, *++ } form a Markov chain with transition
probabilities
Pr[@t+l = 1[@t =0] =1 - Prie,,, = ol@va = 0] ==
Pr[®t+l = 1|8, = 1] =1 - Pr(® = 0le, = 1] =1 .

t+1 t

Rather than restricting the development to the Bernoulli random
variables of attributes inspection it is no more difficult to allow the
measurable quality characteristic to be any random variable which takes
on only a finite number of poussible values. Hence, for each 6¢(0, 1}
let p(*, 8) be a probability distribution on the elements y in a

finite set Y. That is for every ©6¢{0, 11, Z: p(y, ) =1 and for

yel
all yeX, bply, 6) > 0.
Let [YO, Yl, Y2, -+« } be a sequence of random variables whose
conditional distribution given {@O, @l, @2, +++ )} 1is as independent




ape

random variables with Yt distributed according to p(-, CR). The

Y «++ 1 represents the measurements taken on the

2’

sequence [YO, Yl,

items the machine has produced.

After each iten is produced there is the option of continuing »ro-
duction undisturbed or repairing the machine. A repaired machine is in
the bad state with probability x° which is usually assumed to be zero.

For each yeY 1let C(y) be the cost incurred by producing an item
of quality y and let K9 be the co.t of repairing a machine which is
in state 6 for 6¢{0, 1}.

The parameters introduced so far serve to srecify the model and are
assumed known.

If at any time that the machine is in production it were known
exactly which state the machine is in one would be able to make the
proper decision whether or not to repair. But the true state of the
system is unknown, and thus the onlyv relevant information obtainable
from the observations at time t 1s the posterior probability Xt that
the machine will be in the bad state for the production of the next
item assuming no repair is made. Girshick and Rubin [9] and L. Breiman
[6] show that any decision rule of interest may be specified by giving

a critical value ¢E&*c[0O, 1] with the interpretation that the machine is

repaired at time t if and only if thf B,

Thus the sequence {XO, Xl, X2, ¢+ } 1is of importance and it is
desirable to formalize its structure. Let = ©be the unit interval
[0, 1] and generically let x be an element of =I. For each yeYX,
two operators are defined on = 1into = Dby:



A x = xply, 1)/[xp(y, 1) + (1 - x)p(y, 0)] (2.1)

[4

and

T X =Ax+ {1l - A X)n 2.2
. y( y) (2.2)

The first operator is an application of Baye's formula. If x is
a prior probability that the machine is in the bad state and Y = y is
produced then the posterior probability that the item came from a machine
in the bad state is Ayx. The posterior probability that the next item
will come from a machine in the bad state is Tyx.

For any critical value &* define the transformation from ==

into =  Dby:

Tyx if x < g*
T° X = < (2.3)

r x° if x> eE*
y —

Let XO = x° which assumes the system starts in the repaired state

and then define the sequence {XO, Xl’ X2, «++ } recursively by
e
Xpy = fYtXt (2.4)

THEOREM 2.1
Ir X,=x" and X .. =to X, for t =0, 1, 2, **+ then th
o= X an — = TYt . for =@, &, & en the
sequence (X,, t =0, 1, 2, -+ } forms a stationary (time homogenous)

t)

Markov chain.




Suppose X = X for s =0, 1, 2, ... , £t and let
s £
n = (y Ty ét =N} for any 7.
Then
Pr[X =X, = 2, ... X, =x,.] = Pr[Y,eS_|X. = x°, ... X, = x,]
t+1 0 ’ At it t - m'70 g 7 &

x, 2 ply, 1) +(1-x) ) »ly, O)

S
Y€ n yeS,q

= Pr(X = e | Q.E.D.

gr1 = MXg t

Since the space X was assumed finite, there are only a finite
number of possible values for the random variable Xt for any given t.
The union over t =0, 1, 2, *** of the sets of possible values is at
most countable and this set, denoted by J, is the state space for the
Markov chain.

The period immediately following one repair to and including the
next repair will be referred to as a cycle. The next theorem states

that for the purpose at hand the process may be studied completely by

concentrating on the first cycle only.

THEOREM 2.2

Let NK be the length of and WK the total cost of the kth

cycle. If E[NK] < + © then with probability one

Lim [(W) + oo+ W) /(N + ooe + )] = B[W, J/E[N, ]



PROOCF :

wl, w2, ... are independent, identically distributed random vari-
ables with E[ijl] < + = and similarly for N, N, The theorem
follows immediately from the law of large numuers. Q.E.D.

It is easiest to study the first cycle b;" considering the Markov
chain to be absorbed when Xt >E&¥*¥, Let R be the repair region defined
by R=Jn([et*, 1], and let H be the transition probability matrix
corresponding to this absorbing chain. The 1, jth entry of H is
nij corresponding to a transition from xieJ to xjéJ.

H 1is symbolically partitioned into

Hll HlE
H =
0 I
where Hll has domain J - R X J - R, Hl2 has ¢omain J - R X R and

I is the R X R 1identity. The partition is symbolic in the sense that

each submatrix is usually infinite dimensicnal.

o

For the absorbing Markov chain with X = x let ¥ = (wj) be the

row vector with Wj equal to the expected number of Xt = xJ for

foR. Let N be the cycle length:
N = inf (t: X, eR)

and ict A = (Aj) be the row vector with

_ _ J _ L0
Aj = Pr[XN = X ]XO = x )

for xJeR.




For a finite Markov chain the following theorem is well known.

THEOREM 2.7.
Let A be the row vector (1, O, O, ***) and 1 the column
vector consisting entirely of ones. For the absorbing Markov chain

described above, ¥ 1is the unique non-negative minimal solution to

¥(I - H,) =4 (2.5)

and further
A = YH , (2.6)
E[N] = ¢l (2.7)

For a Markov chain with denumerable state space the development
leading to the proof of this theorem may be found in Kemeny, Snell and
Knapp [12] in the chapter on transient chains. Although not a rigorous
proof, an intuitive justification of Equation 2.5 is easily made. For

every column other than the first, the equation may b~ written

i i o
Wi = ;: anji o X fR and x ¥ b's
x”{R

In words, the expected number of times the process Xt is in stste x

is equal tc the expected number of times the process is in xY leading
to xl weighted by the probability of such a transition, and this is
summed for all deR. The first column of the Equation 2.5 is wo = 1

which states only that a repair occurs once per cycle.



This theorem leads to the computation of the average cost per period
for any critical value §&*, Let W be the total cost of the first cycle

and ¥y the average cost per period.

y = E[W]/E[N] (2.8)
W has two components of cost: wl, the cost due to the quality of items
produced and we, the repair cost. For Xt = xlfR the expected cost of

the next item is

E [c(¥)] = x* > cly)ply, 1) + (1 - x) Y c(y)ply, 0).
Y vex yex

E i[C(Y)] denotes the expectation of C(Y) where Y _s distributed
X )
according to p(+, ® and © is zero with probability x= and one

with probability 1 - x>. Thus

E(W,} = 2 ¥.E  [c(Y)] (2.10)

xifR =

For XN = xJeR, the probability that repair will be made to .. bad

machine is xJ. Hence

E[wg] = Z Aj[x‘jK + (1 - x‘j)Ko] (2.11)

1

and E[W] = E[W ] + E[W,].

2]

Thus by solving the infinite set of linear equations V(I - H = A

ll)

which depend upon a particular choice of a critical value £* and then

computing A = yH and E[N] = y1 one may compute the average cost

12

per period y = E[W]/E[N] corresponding to the usc of &* as a critical




value. By doing this for several £* 1in a trial and error manner one
may compute the minimum cost policy.

It should be noticed that the cost information enters the computa-
tions at a late stage. The major computing effort lies in computing the
¥ and A vectors and it is only after these are computed that cost

factors enter. Therefore as a solution to the problem it is proposed

to tab.ie
a. m = z: xlwi = The number of periods per cycle the
xi'R
# machine is in the bad state. (2.12)
o m_ = > (1 - xl)wi = The number of periods per cycle the
xifR
machine is in the good state. (2ol
c. m_+m = E{N] = The expected cycle length. (2.14)
d. Yl = z: xJAj = The expected fraction of repairs made
A st to bad machines. (2.15)
e. r = 1l -~ Ty = The expected fraction of repairs made
to good machires. (2.16)

as a function of the system parameters and the critical value &%, In

this notation one has:

E[W,] = m_ Y c(y)p(y, O) + m 2 C(¥)p(y, 1)
y

O
Y

E[wg]

rbKo + rlKl

-
<



Some other easily computed results are of interest. If Xt is a

numerically valued random variable the average outgoing quality level is

[m, 2 yp(y, 0) + my 2 yply, 1)1/[m_+ m]

Yi Y

The repairs per period is l/(mO + m The second moment of the cycle

l)'
length may be computed by solving

T

(I -H Do=2A

ll)

for the column vector ¢ and then

E[N°] = AT
X {R

These results may be used for comparison against actual values encoun-
tered in an application. Cycle lengths or quelity levels differing
significantly from predicted values would indicate an erroneous choice
of parameters.

The results presented so far may be generalized, at least partially,
to the case of a machine with more than two underlying states, say a
machine witih a mediocre state as well as a bad and a good one. Con-
ceptiaily the results still hold but the posterior probability distribu-
tion ::t which tracks the process must now be multidimensional. This

leads to such difficulties both in computing and implementing the policy

so as to render this generalization of little interest.

11



SECTION 3 - A NUMERICAL SOLUTION

This section discusses a numerical solution to the set of linear

equations

v(I - H = A

ll)
or

v, = ) v.Mm,. for xij and xJ 4 x°

Usually a reduction of this infinite set of equations to a finite
set is the first step in any solution. One method is to consider only

those states that the (X t =0, 1, *+- )} process can reach in m

t?
steps, or nearly equivalently, to truncate the quality history and not
use the quality of items produced more than m periods ago in computing
the posterior probabilities. For m sufficiently large the ensuing
finite set of equations will closely approximate the infinite set.
Unfortunately the number of possible states reached in m steps of the
{ Xt’ t =0, 1, -+ ]} process is astronomically large, even for
moderate m. It has an order of magnitude of the cardinality of X

raised to the m - 1 power.

But consider the implementation of a policy of the optimal form.

A machine operator repairs his machine and starts operation with a
probability on the bad state of zero. After inspecting each item pro-
duced he updates his posterior probability. When it reaches a critical
value, say .60 chance that the machine is in the bad state, he repairs
the machine and begins the cycle anew. It would not seem objectionable

812




if this machinist computed these probabilities only to the nearest .01
decimal place. But this automatically reduces the problem to a finite
number, at most 101, of posterior probability states. This simple idea
is the keystone in the proposed numerical solution.

As a practical matter it seems best not to have a constant mesh
size such as .0l but to have the mesh size vary so as to be sufficiently
small to be able to handle the smallest change in posterior probability
encountered. For example, if Xt = x one would want the mesh size at
X to be at least as small as min [x - Tyxl. Unfortunately, this too
may be difficult to achieve enti;ely but it serves as a useful target.

The algorithm for approximating the transition probability matrix
will be presented for the case of inspection by attributes where item
quality is a Bernoulli random variable. Let Yt = 0 1if the tth item
is good and Yt = 1 1if it is defective. For this special case let Pq
be the fraction of gocod items produced when the machine is operating

correctly and let Py be this fractio.l when the machine is in the bad

state.
pé) = p(o’ e) for QE[O) i

The algorithm which computes the approximating transition proba-
bility matrix is described in the Appendix. Table 3.1 shows such a
transition probability matrix, computed on a Burrough's B5000 machine.
The states listed are possible values for the posterior probabilities
used in controlling the process. The algorithm generating this matrix
has two distinct phases. 1In the first, a finite number of these states
are generated, and in the second the transitions among these states are

filled in.
15




N
Once the finite matrix, denoted H, which approximates the infinite

matrix H has been computed one proceeds to compute operating charac-
teristics as a function of a c¢ritical value ¢#. It has been shown

earlier that the major computing effort lies in solving the equations

Wt -1 a2, (3.1)

AL ¥
where Hé is the submatrix of H consisting of states with values
less than &%,

To do this in the most efficient manner it is best to set up the

largest possible set of transposed eqguations,

A
(1 - DRT = al, (3.2)

and then, using the common Gaussian elimination technigque, to solve sub-
sets of these equations f'or increasing &%, in an increasing manner.
Besides allowing this overlapping of effort, the Gaussian elimination
technique recognizes the many 2zero coefficie . n the equations,
enabling a faster, more accurate solution. The mdodified Gaussian elimi-
nation procedure used 1is also presented in the Appendix.

A sample of the results of the program is given in Table 1I. The
process parameters are listed at the top of the page. The operating
characteristics corresponding to each choice of critical value appear
below this. The entire calculations took 6 seconds of B5000 computer

time.

14



Pl = u.i el FLos e Jue Py 2 (i, =4 PRSI s GeuCf

AR A . (LU0 tAlRl Y ST o7 ASYE = 6,104 FCRIT = CaYve?
P, TrAGST I e 3 jp 1Ty MATRIX TS
STault el STatt shalt wlln STATE sTalt niTk
N (F huw-) Wire O ) (1)) Foaon NELCTL) (1o PRt
t Lot 1 Tl daG ey 1 LrUry 0,01C
1 Ly lbaoU Z G- [UPRE N N 34 GCedlo 0,014
P et de 3 CLU47 U, 9K”] 37 Dedde 0,017
K| Gelay 4 (VIV R T CEY 36 0,o5Vy4 n,01¢9
4 Coelby 5 [PV {4 Uent?y qcC 0.4/ 0,021
8 QeU&/ o] C.,U G 0.a77? 41 0eov0 0.0¢2
€ Cella / C.OU/Y uW,57¢ 42 Oe633 0,074
7 Lel/Y ] C.luna U,S7% 42 0.0633 0.,025%
8 CeCly 9 c.0n7 0,974 43 0.6/4 0Q,0¢ct
P C.0487 10 C.0y0 0,473 43 VDe0/4 0.0¢7
10 GeCYHO 11 .09 0.4713 43 0,674 0,027
11 C.C93 1¢ 0., U¥Yy U,97¢ 43 V,674 0,0¢z8
12 C.LY5 13 G097 0,972 43 0674 0.0z8
13 C.097 14 c.102 0,572 43 0.674 0,028
14 0,162 14 C.,102 0,471 44 0./13 0,026
15 Ce107 15 0.,107 0,57¢C Q4 J,713 0,013¢
16 Cs113 15 C.1u7 0,966 44 0./13 0,031
17 0114 10 0113 0,668 a4 0,713 0,C32
18 Del 17 17 c.114 0,568 45 O.749 0,032
19 Ce119 10 C,117 uU,967 45 0./749 0,033
20 0.122 19 0119 0,967 45 0.,749 0,033
21 0.126 20 C.122 0,966 45 0.749 0,034
22 Ce131 21 0.126 0,969 45 0.,749 0,038
23 0,136 22 C.131 V.564 45 0.749 0,03¢
24 0.343 23 0,136 0,961 46 0.782 0,037
25 0150 24 0143 0,961 46 0.7/82 0,036
26 0.159 25 0.150 0,960 46 0.,782 0,040
27 0.170 26 Ce159 0,958 47 N,812 0,042
28 0.183 217 0.170 U,55% 47 0.812 0,045
29 0.198 24 0.183 0,952 q8 0.839y 0,048
30 0.216 29 0.198 0,949 48 0,839 0,051
31 0.236 30 0.216 0,945 45 0,863 0,055
32 0,259 31 0,236 0,541 5C 0,884 0,056
33 Ce285 32 0.25%9 0,936 5C 0,884 0,0¢4
34 0,315 33 c.285 0,930 51 0.902 0,07¢C
35 C.348 34 0,315 0,524 52 0.918 0,07¢
36 Ce383 35 C.348 0,617 53 0.931 0,081
37 C.422 36 C.383 0,910 5S4 0.942 0,050
38 0,462 37 C.422 0,907 54 0.942 1,068
39 C«504 34 Cs462 0,894 55 0,952 0,106
40 0.547 3y 0,504 0,886 56 0,960 0,114
q1 0590 40 C.547 0,478 57 0,967 OQ.122
42 0.633 q1] 0.590 0,870 57 0.967 0,.,13C
43 0e674 42 0.633 0,862 5?7 0.967 0,138
44 0.713 43 c.674 0,855 s?7 0,967 0,145
45 0+749 44 0,713 0,&48 57 0.967 0.1592

Table I (Continued on next page)
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46 Coltz nh Cola9 0 "Ny St 0,96/ 0,154

47 .1 4o Ce7t82 0.k 38 954S D,9y0yY J,164
a8 Cel iy af LeH12 0 H31 396 Oevyvyi Hael¢S
46 C.801 40 G.M39 U, n2¢6 996 U.y¥2 0,174
5C 0.8y u4v G803 0,822 996 V.94 0,178
S 0.902 Hu 0,084 O,K16 969 0.%9Y5 0.181%
Ye Ceb1lb 51 C.9v0?2 U.f1¢e 996 QY96 0.184
53 Ce931 572 0,918 0.013 999 0.996 ND.187
Sy Qa2 54 C.Y31 0.811 99% 0.997 0,186
59 U552 Su C.942 O0O,HO0S 996 0.978 0,191
S6 Ue960 oY) C.997 J,H08 969 0.9Y98 0,192
57 0,967 Yo C.¥6N 0,206 999 0.Yv8 0,154

Table I An approximate transition probability matrix is given here for
the case where a process in the good state has a probability of PI = .02
of moving to the bad state for the production of the next item. PO = .99
and Pl = .80 are the fraction of good items produced when the meschine
is in the good and bad states respectively. The table has the following
interpretation. From any state such as state number 25, x = .150 the
posterior probability {Xt, t =0, 1, -} can go to one of two other
states. If a good item is observed,which for Xy = .150 occurs with
probability .961, the process moves to state number 24 with X1 = gy
Iff a defective item is observed then Xt+] = 782,

ASYP = .104 is a value about which the states tend to clusier. An
approximation is made here by grouping all states within EPSL = .0Q7

of ASYP into two classes and assigning a common value to each class.

A second approximation occurs when a "TO STATE" cannot be found exactly
among the finite number of states listed. Such a "TO STATE" is assigned
to its best approximation and MAX. APPROX. = ,0201 measures this
apprcximation.

16




TRANS T i Proma 2y U [T 15 Cof2 _ .
FradCile s Wb atant Flpks b L1 CED 2wy A RFFAJKER MACKHINE 1S Cov90

FraCllon b Gudo Tleds P00 uct) 0y A PPEFECTLIVE MACHINE 1S0468Q0
ChlTiCal Exre QI Peilog S b PRACTIUN FRKACTIULN CF MACH KEPAJRS
VALUL cycLte An ol CACKk LS LF BEFECT, HEPHrD WHCE AhL PEW

LEwulk =G =pEbECT - [Tt VS =LLLU= =CEefECT= PERICD
0,10 172,44y 11enS u.ttc 0,022 0.764 0,23¢ 0,08004
U.i5 3/ .u4¢€ Ja,le Jedu n,cs7¢ C.310 0.684 0,02669
020 37 .46 I4,1¢ 3.34 n,cz7c¢C 0.316 0.684 0,02669
0,25 37 U8 Ja1 7 3,34 N,Cz7¢ 0.316 0,684 0,02669
0.3C 37 .46 34,17 3.4 n.c27c0 0.316 0.684 0,02669
GCedb 37 .53 34,43 3,40 0,271 0.310 0.,69C 0,02643
U.,40G 37.013 34,43 3.uc 0.,C271 0.310 0,640 0,02641
0,45 JH.2? Ju.7% 3 Uk 0,CP7¢ 0.303 0.€67 c,02617
0,50 3n.22 14,75 J.ué6 n,027¢ 04303 0,657 0.02617
V.55 3B .96 35,437 3.63 0.0277 0.291 0.7C9 0,02564
0,60 39,38 15.66 3.72 0,C279 0.285 N0.715 0.,02540
065 40411 36,20 3.91 0,Cz85 0.274 0.72¢ 0,0249%3
070 42.15 17,64 4,5C 0,C303 0.240 0.754 0,02373
0.,75 55.87 46,96 8.91 0,04023 0.062 0.938 0.01790
0.80 56,31 47.23 9.08 00,0406 0.057 0,943 0,01776
0.85 57.05 H7 .65 9,40 0.,0413 0.04Y 0.951 0,01753
0,90 S97./8 4u.01% G.7%2 0.C421 0.042 0,95¢#8 0,01731
0495 59.66 48,67 10,99 n,Cus0 0.02v 0,971 0,01676

Table II For the system whose parameters are listed in the heading,
this table gives the operating characteristics of rules defined by

a critical value. For example, if the rule "Repair at time t if

and only if Xt 2*.65” is used then the expected cycle length or

number of periods between repairs is 40.11. For 36.20 of these periods
the process will be in the good state; for 7.91, the bad. The overall
fraction of defective items produced will be .0285. The fraction of
machines sent to repair which were actually still in the good state is
.274. The remaining fraction represents bad machines. The last

column is the reciprocal of the cycle leagth.
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SECTION 4 — SOME EXAMPLES

Two examples of the use of ihese tables are given. The first is an
illustration of the simplest type of process for which the tanles are

useful; the second, the most complex.

Example 1

Suppose the probability that the process moves from the good state
Lo the bad state is = = .02. Let P, = .99 and p, = .80 be the
fraction of good items produced when the system is in the good and bad
state, respectively. Each defective item produced costs ¢ = .60 wunits.
A good item has zero cost. Repair is instantaneous and costs 1.00
unit, regardless of from which state repair was made.

For each critical value, the cost per period must be computed.
That critical value having the lowest cost then specifics the oplimal

policy. For this simple example the average cost per period is given

by
¢ X {Fraction of Defective Items] + 1 X {Repairs Per Period)

The fraction of defective items and the repairs per period are obtained
from Table II.

This computation yields Table II1I below.

18




Critical Expected

Value Cost/Period
00 'LO 0.09334
0.15 0.04287
0.20 0.0Lk287
aL25 0. 04237
0.30 0.04287
0.35 0.0k2e7
0.40 0.0Lk267
0.ks5 0.04250
0.50 0.04250
0.55 0.04225
0.¢0 0.04216A
0.65 0.0Lk205
0. 70 C.0L 191
0.75 0.04208
0.80 0.0421k4
0.85 0.04231
0.90 0.04259
0.95 0.0Lk376

Table III This table lists the expected cost per period
for each choice of critical value for the problem
given as Example 1.

The minimum cost occurs at an optimal critical value of E&* = .70
and has a value of .0419]1 units per item produced. The cost curve is
relatively flat. At a critical value of .60 tte cost is .04216 and
at .80 the cost if .0O421L4. This flatness justifies computing the
operating characteristics for critical values in steps as wide apart as
.05.

Referring again to Table Il one sees that under the optimal policy
the expected cycle length is 42.15 periods and for 37.04 of these
periods the process operates in the good state. On the average the
process operates in the bad state for 4.50 periods before a repair is
made. The overall fraction of defective items produced is .0303 and
24.6% of the time an erroneous repair is made to a process still in the

good state.
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One common criticism of the control approach using posterior proba-
bilities is the difficulty of implementation. This criticism is ill
founded in this particular example. By examining the transition matrix
in Table I one sees that a posterior probability exceeding .70 can occur
in only two ways. The zeroth item, produced immediately after repair is
always ignored. If no defective item occurs in items 1 through 14, then
repair is made on the occurrence of the first defective. If, however,

a defective item is observed in items 1 through 14, then repair is made

on the occurrence of the second defective item.

Example 2

Again let = = .02, pO = .99 and pl = .80. The direct cost of
each item produced is .40 units. The selling price of an item is 1.00
units and each good item produced can be sold. When production is
stopped upcn suspicion that the process is in the bad state two things
occur. First a detailed examination is made to determine if the process
has truly broken down. This examination takes 2 periods o1 time and
costs .20 units. If the process is found in the bad state a repair is
made which takes 3 periods of time and costs .80 units. The objective
is to maximize the expected profit per time period.

The expected cycle length given in Table II is now the expected
number of periods in a cycle that the process is in production. To get
the true cycle length, an amount representing repair time must be asdded.

One uses t:.~ columns giving the fraction of machines repaired which are

good and defective. At a critical value of .70 this yields
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E[N] = 42.15 + 2 + .75k x (3)

= Loyl

During a cycle 42.15 items on the average will be produced at an item

cost of .40 units each to yield
Item Cost = 42.15 X L0 = 16.86

Of these (1 - .0303) X L42.15 will be good items which may be sold for

1.00 units each to yield

ITtem Return = .9697 X 42.15 = 40.87
The average cycle repair cost will be

Repair Cost = .20 + .754(.80) = .803

This yields, for a critical value of .70 the average profit per period

of
y = (L0.87 - 16.86 - ,890)/47 . L1 = .500

Repeating these calculations for several cl [ces of critical values one
arrives a* Table IV. The optimal critical value is .70. By referring
again to Table 11 one may calculate that the rate of production of good

items is

u2-l5£é.il'o505) = .8807 items/period

21




Critical Total Cycle Profit

Value length Per Period
o 41.90 k992
45 42.31 .Lags
.50 L2.31 4995
.55 b3,10 4596
+00 b3.53 4098
.65 Lh.29 4599
£ 70 L& gl . 5000
N =~0.H3 L4997
.80 85 Juo L4 Riielels

Table IV This table lists the expe~ted profit per period for each choice
of critical value for the problem given as kExample 2. The maximum profit
is seen to occur at a critical value of .70.
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SECTION 5 — VALIDITY O THE SOLUTION

The validity of the rroposed solution is checked in two ways.
First several inequalities whicrh the proposed solution must satisfy are
developed and the solutlion is checked against them. Second the problemn
is solved anew through the method of discounted cost dynamic programming
a..: this answer compared to tle original.

Consider the sitnation depicted earlier in Example 1 where repair
is instantaneous and has a cost of one unit irrespective of the state of
the process at the time repair is made. Let ¢ bte the cost of a

defective item and let =n, ©p_, and Py have the same meaning as

@)

before. Let ¥y Dbe the average cost per period assuming that the state

of the process w=re known.

Repair Cost + Item Cost

N
[

(5.1)

1}

n + (1l - po)

If y 1is the minimum cost assuming the process state unknown then

D=

To get an upper bound on the solution one realizes that the cost
under an arbitrary policy must be greater than the cost of the optimal
policy. The arbitrary policies considered are of the form:

"Repair every m pericis" for some constant m.

Let N be the number of periods that the process is in the good

state, and let




a_ = Pr(N - n] = (1 - =) Bl
p= 1
— n_
b = Pr[N >n] = M a, = (1 - n)
k=n
Two identities are used.
‘ k-1 7
Y oa; = (1-x)"7 - (1-7) (k2]
i=k
m-1 m-1 m-1
Z nan= Z Z a.l
n=o k=1 i=k

((1 - (1 -0 /) - (m- 1)1 -n)"1 (5.3)

1f & is the average cost per period under a policy of this form then

1 [

m-1
1/m+ (1l - p)) + < 1 kZi e(p; = p)ka, + em{py - po)b;}

~
h

c(p, - p)
__fﬁ;___EL(l N ST

SR % [e(p) - po)/n + 1] - ==

To simplify this expression let g --C(pl - po)/n and use the

approximation for large m and small =

S )™ .

One gets
3T (1 - pl) + (1 - B) % + % e”™
=c(l - p) *+ (x - i)(a S0 % ™™ (5.5)
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1 .
For m - 7 this reduces to

-2

- e(1 - p )+ elp, - py)(2)

Thus

y <y Sinf <3

m>0

For Example 1
y = L0220
7 = .OL¥19
inf 5" = L0665
m >0

y = .OCT9

The discounted cost dynamic programming approach to sequential
decision problems is well known.
Let x be the discount factor such that a unit of valu
period hence has a present value of a“;
K be the cost of repairing the machine;

c the cost of a defective item;

e one

g(la, x) the minimum expected total discounted future cost

C(x) = e[x(1 - p)) + (1 -x)(1-p)].

If a minimum cost rule exists then one can easily shnw that

oy . o
G e P aExog(G, T
glets %) = minm

| c(x) + aExg(a, TYX)

2p

(5.7)



Derman [8) has rigorously shown that such a rule exists and is given by

"Repair at time t if and only if Xteﬁz” where

R, = (x: g, x) = K + c(x°) + oK JBla, T x°)) (5.8)

G Y
X
One usefulness of this theory lies in the fact that Equation (5.7)

may be solved in a straightforward manner. One defines go(a, x) E @

for all xe[0O, 1] and then computes recursively:

G X o
K + c(x°) + ahxogn(a, X))
8n+l(a1 X) = mln (5'9)

| c(x) + ahxgn(a, rYx)

It is easily shown that for every ae[0, 1) the sequence of functions
(gn(a, +))  converges uniformly and monotonically to a bounded limit
function g(&, *) which is the unique bounded solution to the functional
Eguegion (5.7).

The general theory shows that "The Existence of an Optimal
Stationary Non Randomized Rule in the Average Cost Case" shows that

lim g(a, 0)(1 - a) = 4
a— 1

and for some subsequ+nce (O )

' _ P
lim Ra R

k—o0 ny

where R* 1is the optimal repair region under the average cost per period

criterion and y 1is the minimum average cost per period.
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Thus a means is provided for checking lhe proposed solution. For
the case considered in Example 1, Equation (5.7) was solved numerically
for values of & of .93, .99, .%95, .999.

It should be remarked that convergence was extremely slow and in
order to get meaningful results 1L was necessary to begin the iteration
with a function close to the solution. However, the results wrre very
close to "lose computed earlier as may be seen in Table V, ver . fying

the computational procedure used in the average cost case.

Dbizg‘t’ggt gle”i{‘iql‘r’lzl é%&ag? é%&ai;{ (1-a);§ m;x[g(a,é)—['l’g(a,')](é)l 2(00)
a & 4 g g, )
.98 T .03817].05817].04130 .002 1.909
.99 LTl .03958( .0Lk958{.0k125 . 001 3,958
.995 . i3 LOLok1| .oks5L1[.0k127 GO, 8.082
.999 .72 .Ok111| .0k211].0k129 . 001 I PN

Table V Solution of Example 1 by the discounted cost dynamic programming
technique. For large & the critical value should be near the earlier
result of .70. The third, fourth and fifth columns should be compared
with the average cost per period vy = .04191 computed earlier. The
relation should be

(1 - a)g(a, o) <y < (1 - a)g(a, 1) ‘

The modal point of the stationary distribution for XL is denoted &,
M .

and (1 - a)g(a, &) should approximate . The last two columns are

given to evaluate how well the numerical solution salisfies Lhe equation

g(a) ) = Tg(ay ')'
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SECTION 6 — SENSITIVITY ANALYSIS

Before one may aprly the ortimal control technique proposed in this

paper one must estimate ithe process parameters n, po and p Suppose

1
these are estimated incorrectly. A means of detecting incorrect estimates
has already been given; compare the actual cycle lengths and fraction
defectives produced with the predicted values for these guantities. But
still unanswered is the behavior of the process under a control rule
based on incorrectly estimated parameters. This section provides a
means for answering this question.

It 15 assumed that the estimates of the parameters are i, Ps and
Py but that the true values are n', pé, and pi. The controller has
computed an optimal critical vaiue £&* based on his estimates =, Py

and p1 and the process will be controlled as before through the

sequence (X t =0, 1, ... )} defined as before:

t’

where the estimated values =, S and p,, are used in defining ‘he

»*
transformation Tg .

However, the (X t =0, 1, *** ]} process no longer has the

£?
Markov property, in general, and its transition probabilities also
devend on the unknown parameters =n', pé and pi.

The technique proposed in the Girshick and Rubin paper affords a
means of analysis. One considers the bivariate process
{(xt, @t), t =0, 1, *** ) which enjoys the Markov property with

transition probabilities given in Table VI.
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Transition

Transition

L) e Probability
(Xgs &) (he s Hyq)
(x, ©) (Tox, 0) pé(] -n')
(x, 0) (t,x, O) (L - p (1 - n")
(x, O) (T %, 1) por
(X) O) (T,X, ]-) (l = pl)ﬂl
it (o]
(x, 1) (t %, 1) Py
(X, l) (Tlx’ l) (l = pi)

Tabie VI The possible transitions with corresponding probabiliti=s fer

the bivariate process ((Xt’ ®f), t =0, 1, **< }. These results nold

only for x not in the repair region R.

o
Let Wo = (W?) be a row vector where WJ is the expected number

of times in the first cycle that the [(Xt’ @t>’ t =0, 1, ¢+« } process
is 1in state (xJ, o) .fer x? not an element of the repair region R.

Let H® = (nij) be the transition probability matrir corresponding to

transitions of the form (x, 0) —a(Tyx, 0) for x¢R and Tyx{R. Ther

Iy

] po(l 1) if xj Toxi

nij = Wl = po)(l - ') if xv = T X
@) otherwise

By an analysis entirely similar to that used in developing Egquation {(2.9)
o . . o e .
one has that is the unique solution to the infinite set of linear

equations:
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¢3 = ) w?q?j ; xI¢R and xJ £ x°
xl%R
o
and Wo S
Let V' = (wj) e a row vector where Wj is the expected number
of times in the first cycle tha! the {(Xt, gt), t =0, 1, -+ ] process
is in state (xY, 1). 1In the case where = = n', P, = b, and p, = py

one would have xng = {1 - xj)wj and this is the approach Girshick and
Rubin suggest. For the case at hand a new system of eguations must be
developed for the ' vector. Again the expected number of times the
process is in any particular state is equated with the sum of the expected
number of times the process is in & preceding state weighted by the
probability of a transition.

Let H' = (ﬂij) be the transition probability matrix corresponding

to transitions of tre form (x, 1) —)(Tyx, 1) for x¢R, and Tyx{R.

Then
( ! ke xJ =1 KT xi
Py o)
| ; J i
=] - ] f = {
njj (1 pl) g X
0 otherwise
Eat HY = (n;j) be the transition probability matrix corresponding

tc transitions of the form (x, O) —»(Tyx, 1). Then

1 1 q J B 1
pon if x TOX
" J i
= - p' ' f =
nij (1 po)ﬂ if x T X
@] otherwise
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The vector ' 1is the unique solution to the infinite system of

equations:

v+ 3o (6.2)

ij i1

wj
xlfR xldR

To investigate the behavior of the process under incorrectly chosen
parameters one first finds the critical value &% defining the repsair
region that the controller will use, based on his incorrect estimates
T, P, and Py - This repair region completes the definition of
Equations (6.1) and (€£.2) which are then solved, using the approximation
technique discussed in Section 3, to yield the vectors wo and V',

Then m the number of periods during the first cycle that the process

e)
is in state 6, for 6¢{0, 1} is computed by

e} T i
X {R

1

mo= LV
xliR

The cycle length is m + m, . From these three numbers the behavior of
the process may be computed for many simple models. The results of such

an analysis performed on the case of Example 1 is given in Table VII.
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SECTION 7 — CONCLUSLIONS

4

The simple Bernoul!li case, where sampling inspection is by attri-
buates, of the Girshick and Rubin quality control model has been studied
in detail., A numerically feasible nmeans of calculating optimal solutions
has been demonstrated. The nature of the solution is such that once
tables of operating characteristics have been prepared, the solution to
a wide variety of problems may be had through slight additional ha .-
calculations from the tables. The solution is optimal in the sense of
minimizing the average cost per unit time. It also appears relatively
insensitive to errors 1in the estimates of the model parameters and a
means of calculating this sensitivity is provided. A means of checking,
over a long period of time, whether or not estimates are correct has
also been suggested. It has been shown that the optimal solution is not
necessarily difficult to implement.

Of course, further work remains to be done. The entire non 1007
inspection case needs to be solved from beginning to end. A means of
estimating the model parameters should be found. Some work should be
done on simplifying the form of the rule to ease implementation. And,
assuming that the model is realistic enough so that there is some demand,

tables of operating characteristics should be prepared.

-
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APPENDIX
A DETAILED DiSCRIPTION OF THE NUMERICAL

SOLUTION METHOD

The proposed numerical solution has two distinct phases. In the
I'irst phase a finite transition probability matrix which approximates
the natural infinite matrix is computed. In the second phase a setl of
linear equations 1s solved for each of several critical values. Each
solution determines the operaling characteristics of the rule using the
corresponding critical value.

The computations were carried out through the facilities of the
Stanford Computation Center. Not only did the Center provide free com-
putation time but also many "software" aids. The Gaussian elimination
procedure used here is a minor variation of one of their library
procedures.,

The program was written in Burrough's IExtended Algol language.

Since this differs from Algol almost solely in the provision for input

and output, the description of the numerical solution method will consist

of a presentation of the program with annotated comments,

Names of Variables

A4 ('@ "L, | @ | Ll , a square array of coefficients in the linear
equations.
ASYP , & value about which posterior probabilities

tend to cluster
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BB{O: LL]

DMIN

DNMAX

EPS

FS{O: LLL]

LL, LLL, and LMAX

MO, Ml

NFG1[0: LL], NFG2[O, LL]

PI

b

the right hand side of the linear equation
Steltys

the deviation between an exact "TO STATE" and
the state in the finite list which nearest
approximates 1it.

the largest of the DMIN's above.

all states within I'PS of the cluster value
\SYP are grouped into two classes, those above
and those below ACYP. ¥ach class is then
assigned a common state to represent all states
in the class. EPS, then, is a variable deter-
mining the degree of approximation involved.
“he list of states, or "FROM STATES" used in
the approximation.

LMAX is the largest allowable transition
matrix size; LL is the matrix size used and
LLL = LL + 1.

the number of periods per cycle that the
machine spends in the good and bad states,
respectively.

the state number to which a transition occurs
in the event that a good or btad item is
observed, respectively.

the transition probability that in a single

period a good machine will go bad.

Z2



PO, Pl

PMAX

PCRIT

PCR

RO

TS1[{O: LL], TS2{0: LL]

TSP1[0: LL], TSP2{0: LL]

¥(09 T.L]

X0

the fraction of good items that a machine

in the good or bad stete will produce,
respectively.

the largest allowable posterior probtability
state.

the largest posterior probability state
encountered.

a dummy variable running through critical
values.

the fraction of repaired machines which are
defective.

the states to which a transition is made upon
the observance of a good or bad item,
respectively. The "TO STATES."

the probabilities of the above transitions.
the vector of unknowns in the linear equation
set.

the overall proport! ion of defective items
produced.

a dummy variable running through posterior

probability values.
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WEGIN C oM TAIS PR, 6Rav 002 TES T DPERATTNG CHARACTERISTICS OF A

COaTmo. wdod A% 4 FUlTIy 07 142 TRITICA, VALJE IF THE RJLEe INPJT 15
L THE THANSTIDIN 2R3 GATUITY 7F THD uARSINE, AND PO (P1)s THE FIACTION
DOGNTD ITI N 4 Al INE TN THE G097 (3AD) STATE WAILL PRODJCE. '

1
Ply 20 »10 Yy EVFSe PMAX, ASYP §

IVTEGE ™ Lo eval JMAXS
LABEL 1wy 3
REAL -« ECDLRZL DY) vaLJdE YRREAL YIREARIN DJe(P1=P0)xYeP0; END D3
REAL PROCEDURE ACY)SVALUE Y3RFEAL YSREGIN A«((Ple2IxPO)xY+PIxPO)/D(Y)}
END A REAL PIICIDu~E BLYISIVALUE YIREAL YS;3EGIN 3e(((1=P1)=PIX(1=P0O))xY+
(1=PO)XPI)/CL=2(Y))seND 4r REAL PINCELNJIHI AINVCY)ISVALUE Y3 REAL Yi
BEGIN AINVe(Y="1)xPQ0/((PO=P1)xY+P1=PIxP0); END AINV;

INTEGER P=OCeDUE SIZECFPS)ISVALJF EPSBKEAL EPSH
BEGIN LASEL OuTa; INTEGER 1«7 REAL Y3 YeD; 103
FOR Ke(STED 1adlLs TSLvAX DD HEGIN IF Y<CASYP=EPS THEN Ye®A(Y) E_SE IF
Y2ASYP THEN Y®AINVIY) ELSE BEGIN YCAINV(ASYP®EPS)JIeI+13ENDS IF Y>PMAX
THEN GO TO OUTAZLIeI+15ENDIDUTALISTIZECTF 1< MAX THEN I ELSE LMAXSENDS
WMAXe753 PMAX¢3,97;

STARTIREAD(PIs P0» P1); ASYPePIXPO/(PO=P1))
LLeSIZEC0.N2)3 £P3¢0D,025 IF LL<LMAX=10 THEN BEGINV LLeSIZECO,01)5EPSe
DeO1ENDSIF LL<_YAX=10 THEN BEGIN LL*SIZECQ,007); EPSe0,0073ENDS
LiLeiLe+1s

BEGIN

REAL DMAX» DMIN, PCRITs PCR}
REAL MO» ¥1, 4£0» RO
INTEGER TaJdsAsMeN1,N2I}
REA_. ARRAY FS»IS1,TS8S2,TSP1,TSP2CLOILLLYS
INTEGZR ARRAY NFGLaNFG2I0LLLDS
REAL ARRAY AA[J3_.»08LLY» RB,ALOILLYS
PROCEIJURE GAUSSA(MsN1sN?»A»BsXsSING);VALUE MsN1sN23 INTEGER MaN1oN2}
REAL ARZAY A(D,0),3,%x(0)3 LABEL SING3 BEGIN INTEGER 1sJsIMAX,K,|J
REAL %/ »To 0Tl
PROCENURE ELTUY(CPLI»N2QUNT»A»8)IVALUE XP1,N2QJ0T3 INTEGER NsKP1)}
REAL QUOT; REAL ARRAY 4,8(013 BRERIN INTEGER I3 FOR Jex?1 STEP I1UNTIL N
DO ACI)eALI)=QJ0TxBLI)s END FLIM;S
MeM=13 Nleyl<l) N2eN2e1) FOR XeN] STEP fUNTIL N2 DO BEGIN
MX*0) IvAXeK; FOR [ex STEP 1uNTI_L N2 0O
IF MX<A3S(A[I»<)) THEN BEGIN UXeABSCALI»X)); IMAXel} ENDJ
IF MX = 0 TAEN a0 TO SINGS
Iek} IF K # IMAX THEN BEGLIN
J = IMAX; Ted(1)5 BI11eBLJIS BCLJIeT} FOR Le0 STEP 1 UNTIL M DO
FEGIN TeAalls L)) ACTILLI®ACU,L)S ACJU,LIeT3 ENDS ENDJ
FOR Jexel STEP JUNTIL M DO SEGIN QUOTeALJ»X)/ALI»K]I) IF QUOTXO THEN
SEGIN BlJ)*B(J)=3(<1xQUOT) ELIMIKe1,MpQUOT»ALJp*)sAlK,*))JEND)
ENDJI END:
FOR JenN2 STEP =1 JUNTIL 2 DO BEGIN
Te0) FOR Lelel STEP 1UNTIL N2 NO TeTealloL)xxfL)}
XCIJe(BLI)=T)/ACI»115 ENDI END OF GAUSSA)

COMMENT THIS GROUP OF INSTRUCTIONS COMPJUTES THE TRANSITION PROB-

ABILITY MATRIX CNRRAESPONDING TO THE PROCESS WHICH TRACKS THE POSTe
ERIOR PROBABILITIES ON THE MACHINE STATE, )
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PROGRAM FYX.PLANATION

Several functions are defined. Y always represents the probability
that the machine will be in the bad state for the production of the
next item. D(Y), then, is the protability that a good item is pro-

duced. A(Y) 1is the next posterior probability given that a good
item is observed. B(Y) is this probability upon observing a bad
item. AINV(Y) is the inverse function to A(Y).

'he function SIZE(EPS) gives the approximating matrix size as a
function of the approximation coustant FEPC. It does this by
quickly going through the approximarting procedure and counting the
size of the resulting matrix.

The matrix size for several values of FEPS 1is computed. The pro-
gram selects & value for PS5 which results in a matrix size near
to but less than LMAX.

The input variables to the GAUSSA procedure are: A, an M X M
matrix of cc-fficients; B, an M vector of constants; X, an M
vector of unknowns and SING, a label to which control passes should

a singular matrix be found. If this procedure is executed for a
value of N1 =1 and N = K then the values appearing in X[I]
for I =1, 2, ... , K are the solutions to
K
Y A[I, JIX{JY = B[I) ; 1 =1, , K
J=1
If next the procedure is called for a value N1 = K + 1 and
N2 = L then X[ ] contains the solution te
L
Y A[I, JIX[J) = B[1) ; I =1, , 1

And so on, extracting the solution to increasing subsets of equations
while solving the largest set.
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COMUENT FIRST THE ALLDANARLE STATES IN THE APPROXIMATION ARE COM=
PJTEDY AND STO=x20 IN FSL ) H
YeO03[¢05 FOU «¢«JLTERP 1 AAILE T<SLL B0 ALGIN FS[IYeY;
IF Y<ASY2=t 26 THON BEGIM TS1(I1«€ACY)SNFGIC(IYel+1s TSPI(1)eD(Y))
T322(1)ed=20{Y), YeA(Y)}: E\NT
ELS: IF Y2asy? T42n SEGIN TSI01YeFollI=1)3 NFGOI(TIJeI=13 TSPLILITIYeD(Y)S
TS22{1Ye1=2CY)s YwAINV(Y)Y; END
£ o5s SCLTIN TH1 (1 =1 1eFS(1)eYeASYP=0,33xt2S5;5 TS1(1)ey; NFS1(I1)e]s
TSI 0L deucr)s Ta2201)e1=~2(Y);
[Tel¢ls yelS8y240,33x2PS5 FOITYeTS1{T)eYs NFSQILT)el; TS21013eDCY)}
TSPZL1Yel1=DCY); YCAINVCALSYRP+IPS)) E5D3
[+1+Y0 [
CoMvENT NEXT THZ MATRIXK 1S FILLFD 1M wlliA & 70" STATEZ BEING
AFPS"L 4TS AY TS NZARZST NFIS-30
IvbxelG,.03 PCAITes ST LY FOl_LL1eD,9999v;
FOR TeCST=P 1UNTIC o ) 8841% DUINeD 995 Ye3(FS{I11)3
IF YOPCRIT4ubX Tap N TLGI* TS2[{11eY; NFG2(1)e99793 £ND
E_SE JEGIN 0 Jel STEP 1 uUNTIL (o DO IF A3SCY=FsS[(J))<OMIN THEN
JZGIN DVINeABS(Y=FS(UY)5<¢d; ENDS
TS2(1)eFsSi<]; NFL2{1)ex; 17 DMIN>TvAX THEN DMAxXeDMINE IND3 ENDJ
COMMENT THE TRAMSITION 2R03A31.1TY 4ATRIX 1S WRITTEN QJT
BEGIN FORMALT FuT1( X4, 2] = ", Fhae3, X2»
"PO = ", TH5,3s Xeo "PY1 = ", FS,.3,
Y4 » MEPS. = ", F5,3/X4 s "MAX,APPRIX,= "» FbH,Us X3>»
"UATRIx SIZE 0:"» 13,
Y4 » "ASY? = ", 85,3 NGy "PCRIT = "» FS5,3 /7 )
FMT2( X205, *"THE TRANSITION PRIIAZILITY MATRIX IS" 7/

X2, "STATE STATE STATE STATE WITH h)
"STATE STATE AHITH » 7/
X2 " N3 (FROM) NOL(TO) (T PRIB NI« C(TO) (T0)"»

" PROY " / )
FMTI( X2 ISs Xd4s FS5.30 X555 1% X4, FS43s X2» F5430 X,
15s XU F3,3s X222 F543 )
FATUC 165 X2 U(FS.3, X2)s Fbels X2» 14,2(X2,F0,4))3
LIST QUTIC PIs 2P0» Pls EPS, DJMAXy LLs ASYRPs PCRIT)
OUuT3 ¢ Ts FSC1)s NFGICLIY, TSI1CIY, TSPILI), NFG2LIY, TS2C1),
TSP2C1) ) H
WRITECFUTI»JUT1)} nRITE(F4T2); FOR 1¢0STERP 1JUNTIL LL DO WNRITECFUTI,
AUT3)E wWRITZ((2ABEYYS ENDS
BEGIN FIRMAT TMTI(X10s"TRANSITION PRIBABILITY IS "sFS.3 /
X10,"FRACTION JF G00D ITEMS PRODUCED 8Y A REPAIRED MACHINE 1S7,F6,3/
X10,"FRACTION 07 GOOD ITEMS PROJUCED BY A DEFECTIVE MACHINE 1S",FS,.3//

X3,0CUTICAL EXPECTED PERIOJDS FOR FRACTION FRACTION OF MACH'»
" REPAIRS"/

XS5»" VA_UE CYCLE NH]CH MACHGIS DF DJEFECT, REPRD WHCH ARE '»
" PER "/

X5, " LENGTH =600D= =DEFECT= ITEMS ~GOJD= =DEFECT=">»
" PERIOQOD" /7713

LISY DUTL1(21sP0»P1)3 WRITE(CTMT1,0UT1)IEND]

COMMENT THIS GI0UP OF INSTRUCTIDNS SETS UP THE EQUATIONS WHICH AILL
BE USED TO SJLVE FIR THE LONG [UN BEHAVIIR 3

FOR JeOSTEP 1UNTIL LL DO BEGIN AALJ»J)*1) FOR ley+1STEP 1UNTIL LL DO
AA[LTI»J1eAA[J,1)e03ENDS FOR JeOSTEP 1UNTIL LL DO BEGIN BB[J)e¢0J
IeNFGITUY; IF ISLL THEN AA[I,J)eAAL],0)=TSPI[U]))



The relations among the transition

the algorithm is summarized as:

(1) L f

a
b.

H

(2) Lf

a0 o P

=

()0 IR

C.

d.

e

Y = FS[I] < ASYP - EPS then
FelI] = A(Fs[1-1)), I # 0; Fs[o) = O;
NFG1{I] = I + 1;
Ts1[I) = A(FS[1]);

SEL[ 1] = D).
Ts2[{1I] is the state in tLhe list nearest to
TSP2[I] = 1 - D(Y);

>

Y = FS{1] ASYP + EPS then
FS[I] = A(FS[T + 1]);
NFG1[I] = T - 1;

TS1[ 1] = A(FsS[1]);

TSP1[I] = D(Y);

TS2[I] is the state in the list nearest to
TSP2[I] = 1 - D(Y);

ASYP - EPS < Y = FS[1I] < ASYP + EPS then

FS(I] = FS[I - 1] < FS[I + 1] according as
or - Y > ASYP;

NFG1[I] =

TSl[I] = FS[I]

TSP1{ 1] = D(Y);
TS2[I) 1is the state in the list nearest to
TSP2[I] = 1 - D(Y);

Equation 3.2

AT T
(I - H) v =

y

is set up as AA-X = BB.

Using the modified Gaussian elimination procedure, the subsets of

Equation 3.2 are solved. At each step, the operating characteristics

matrix variables generated by

T = NP

B(Y);

are computed according to the finite counterparts of Fquations
2.12 to 2.16.
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Tewradlu)i 15 Iste THIY aal1,0)e8801,J)=T5P2(J413 END3J

A0 )e )

TaMMENT THg Ve RUN AEWAVITIR NF THE SYSTEM IS FOUND FIJIR EACH PQJSS-
Tuts CRITICE, VE_UF PCR., H

Ne e =13

FUR PLReD,1¢ STE2 0,0% JNMTIe PCRIT DO RKESIN

FIR [e€d85TER2 Ya<loe 60 11<PCR DO wuel;

N1 eN2+15 i2eMi SAUSSACLL*1,N141,M241,40,38,X2SING) )} (:)

M1eudeRIe) 0 O JCOSTER 1UuNTIL M D2 BEGIN

M1ewl+F 501 )xxL1)5 vDeuO+(1=FS{1))xx[])s

IF TS101)2PCR THEN RO«Z0+Xx[1IxTSPILTIIxTSICIY}

1F TS20(132PCR THEN ROeRCex[1I>TSP2013IxT82C1)5 ENNS

X0e (MOXPO+M1IxP1)/(M0+M1);

BEGIN FORYAT =MT1( X7, FU4,2, X3, FEL2, FPe2s FB,2s X2» F7.4,X3,2(F8,3),
F10e9)3LIST JDUTI(PCR,MN+ML s MO, M1»1=X0»1="ROsRO»1/(MO+M1))}
NRITECFMYI1,0JT1)SENDS ENDS

WRITEC[{PAGEY) G) TO START; END?J

SINGY BESIN FIRMAT F("SINGULAR MATRIX™)3 ARITECFISENDS GO TO STARTI

END,
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